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Abstract-The problem considered in this paper is the laminar mixing of two parallel streams of com- 
pressible fluid mixtures. The streams are two component compressible fluids, e.g. air and some contaminant. 
The primary interest is to describe the mixing process and its effect on the concentration of each species 
composing the fluid. The concentration of one of the components of the binary mixture is assumed to be 
small, and a ~rturbation solut<on, with the concentration as the small parameter, is initiated. The zero-th 
approximation is carried out indetail. The Schmidt number and the Prandtl number are arbitrary constants, 
the viscosity is assumed to vary linearly with temperature, and the two components of the fluid mixture 
individually obey a perfect gas equation of state. An analytical solution to the initial approximation is 
obtained by means of rapidly convergent series expansions. Only the Schmidt number and the Prandtl 

number influence the computation of fundamental solutions. 
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NOMENCLATURE 

Cartesian coordinates ; 
mass density ; 
x component of velocity; 
y component of velocity ; 
mass fraction ; 
dynamic viscosity ; 
kinematic viscosity ; 
binary diffusion coefficient ; 
Schmidt number, v,/D12 ; 
specific heat at constant pressure; 
temperature ; 
Prandtt number, 

Wk) {cpz + c&, - cp:)); 
thermal conductivity; 
gas constant ; 
pressure ; 
enthalpy ; 
transformed y coordinate (see 
equations 9) ; 
stream function (see equations 9); 
similarity parameter, Y*(2x*)-*; 

t Presently NAS-NRC Postdoctoral Fellow, Depart- 
ment of Applied Mathematics and Theoretical Physics, 
Cambridge University, Cambridge, England. 

function defined by 

rc/* = J(2x*)ftr); 
scale factor in the solution of 
fO (see equation 21); 
modified similarity parameter. 
5 = by; 
function defined byL = (l,/b)f,; 
function directly proportional to 
c,* (see equation 29); 
function defined by 

(7-+,/T-) T,* - 1 = 7;,; 
parameter in the solution of the 
temperature equation given by 

(u+*!~~,T+)(~“+,/T-) b4; 

a particular solution of equation 

(37); 
a homogeneous solution of equa- 
tion (37); 
a constant in the solution of TO 
(see equation 39). 

refers to the particular solution 
of a differential equation; 
refers to the homogeneous solu- 
tion of a differential equation; 
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1 and 2, refer to the two components of 
the fluid mixture; 

0, refers to the initial approxima- 
tion. 

Superscripts 
+, 

* 

refers to conditions far from the 
mixing region in the upper stream ; 
refers to conditions far from the 
mixing region in the lower stream; 
refers to a dimensionless variable. 

INTRODUCTION 

SEVERAL authors have considered the problem 
of the laminar boundary layer between parallel 
streams. Chapman [l] investigated the mixing 
of a high-velocity stream with a region of fluid 
at rest. His analysis assumed that the Prandtl 
number was unity and the method of solution 
involved repeated quadratures. Lessen [2]. 
in a paper on the stability of the flow of a stream 
of incompressible fluid over a layer of the same 
fluid at rest, considered analytical methods 
only far enough to reduce the problem to a 
routine numerical solution. The more general 
problem, when the two fluids are of different 
densities and viscosities, was solved by Lock 
[3] who also used analytical methods only to 
facilitate a numerical integration. 

The mixing oftwo semi-infinite incompressible 
streams has also been studied by Gortler [4] and 
Pai [5]. Gortler’s method assumes that the 
streams have nearly identical velocities so 
that a series expansion in powers of a small 
parameter, which is the dimensionless velocity 
difference between the streams, is used. Crane 
[6] has used a double series of powers of two 
parameters and the method of Gortler to deal 
with the compressible mixing problem. 

The problem considered in this paper is the 
two-dimensional laminar mixing of two parallel 
streams of compressible fluid mixtures. Each 
stream is a two-component compressible fluid, 
e.g. air and some nonreacting contaminant. 
Far from the mixing region the properties of 
each stream, such as velocity, temperature. 

density, contaminant concentration, etc., are 
constant. 

The conservation equations describing the 
mixing process must be solved subject to the 
conditions that the velocity, temperature, den- 
sity and concentration both far above and 
below the mixing region must tend to be 
prescribed constant values. 

Two distinct physical situations arise which 
lead to perturbation solutions of the general 
mixing problems; namely when the streams 
have nearly equal contaminant concentration 
and when the lower stream is at rest and un- 
contaminated, while in the upper stream, the 
concentration of contaminant is very small. 
The bulk of this paper will deal with the latter 
case, for which the self-similar solution to the 
initial approximation, (for p - ‘T; Pr = constant 
and SC = constant), is calculated by a method of 
power-series expansion and analytic continua- 
tion. This method is closely related to the method 
used by Blasius [7] in his famous paper on the 
solution of the boundary layer adjacent to a 
flat plate. 

PROBLEM FORMULATION 

Consider the two-dimensional mixing of two 
streams of fluid. Far from the mixing region the 
upper fluid has velocity us, temperature T’. 
density pf, viscosity p’+ and contaminant con 
centration c +. The velocity u+ is directed along 
the positive x-axis and the positive y-axis points 
into the upper fluid. The lower fluid has charac- 
teristics u-, T-, p-, p- and c- far from the 
mixing region. The problem is depicted in Fig. 1. 

The equations of conservation of mass, 
momentum and energy for a multicomponent 
fluid are derived in Truesdell and Toupin [8] 
from a continuum point of view and in the text 
by Hirschfelder et al. [9] from a microscopic 
viewpoint. It is assumed here that the boundary 
layer approximation to these equations is 
applicable. A boundary layer analysis is justified 
far downstream from the onset of the mixing 
region. The appropriate equations are (see Fay 
and Riddell [lo]) 
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STREAM u+. r;t p,+ C+ 

MIXING REGION 
.x 

STREAM U; T;-p; C- 
b 

FIG. 1. The geometry of the mixing problem. 

ac ac a pat 
ma;+ P?&=~ g-5 ( > (2) 

au au a au 
Pu~+Pvay=dy Pay ( > (3) 

C p2 ( 1 + CPl - CPZc >( PUz + 
=P($Tcp(l + aT PVqy > cpl~-cp2c;(__) a pa7- 

ay or ay 

(4) 

and the equation of state is assumed to be 

p = constant = pTR, Rt - R2 R c 
> 

(5) 
2 

i.e. each component of the mixture is a perfect 
gas with constant specific heat. 

c is understood to be the mass concentration 
of species 1. Species 2 is usually considered to be 
air and species 1 as contaminant. This system of 
equations will be investigated under the assump- 
tion that Pr and SC are constants. 

0 

The boundary conditions are 

lim 4 = 1, 
y+mC 

lim 5 = 1, 
Y4” 

lim & = 1 
Y-m 

lim -& = 1, lim If_ = 1 
y+-‘mc y+-00 U- 

and 

lim ?- = 1. 
,.‘-a, T- 

(6) 

METHOD OF SOLUTION 

The solutions to be derived here are for 
arbitrary, but constant Schmidt number and 
Prandtl number. The cases where SC and Pr are 
unity merit special mention because of the 
simplifications that occur. 

If the Schmidt number is 1, the species 
continuity equation, (2), the momentum equa- 
tion, (3), and the boundary conditions, (6) 
require that 

u - u- c - c- 
= 

n+ - n- cf - c-’ (7) 

Thus the concentration is determined immedi- 
ately from the velocity. If the energy equation is 
rewritten in terms of the total enthalpy, h + u*/2, 
the equation shows that if both SC and Pr are 
unity 

u - u- (h + u92) - (h + u2/2)_ 

u+ - u- = (h t U2/2)+ - (h + l&2)- (g) 

For this special case both the concentration and 
temperature have been related to the velocity 
and it is only necessary to solve the momentum 
equation. However, values of SC and Pr different 
from unity are of interest and each of the 
equations (1) through (5) will have to be dealt 
with. 

The system of equations describing the 
mixing problem, equations (1) through (5) is 
simplified by introducing the Howarth-Dorod- 
nitsyn variables and the stream function. Thus 
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let 

Y = $dy, P+ w u=-- 
P ay 

and -P+ w ~C------ 
p ax’ 

(9) 

It is also convenient to introduce dimensionless 
variables, so that 

u* = -!L 
+’ 

c* = c 

U 
?- C 

Note that L is a reference length, and A is the 
constant of proportionality in the assumed 
relation 

P -=A$. 
P+ (10) 

For a discussion of this relation see Chapman 

Ul- 
The differential equations and boundary 

conditions admit solutions in terms of the 
similarity variable q = Y*(2x*)-*, so that with 
II/* = J(2x*) f(q) the system of equations 
becomes 

+ 

(11) 

(12) 

+ (“p’,cp2)c+(; + $p*T*Fz ;pz, 

and 

p*T* 1 + RI -R2 + z+ 
c c 

R2 

=l+ R,-& + 

R2 

c . 

(14) 
The energy equation is decoupled from the 

system since only the product pT appears in the 
species continuity, momentum and state 
equations. 

The system of ordinary differential equations, 
equation (11) through equation (14), may be 
solved as follows. If c+ # 0 and c- # 0 and the 
streams have nearly equal concentration, then 
one may define an expansion parameter as 
(c’ - c-)/(c+ + c-). If c- = 0 and c+ is small, 
c+ is itself an expansion parameter. The different 
expansion parameters that may be defined are 
not crucial in themselves, since a choice between 
them will be dictated by the physical situation. 
Of greater significance is the method of solving 
the perturbed equations whose form will be 
independent of the parameter chosen. In parti- 
cular, these expansions will lead one to the 
problem of solving the Blasius equation for the 
velocity. For the solution of this equation one 
may follow Giirtler and expand in powers of 
(u’ - u-),/(u+ + u-), if this parameter is indeed 
small, or use the classical method of Blasius. 

In this paper attention is focused on the 
problem for which the boundary conditions are 

lim c* = lim u* = lim T* = lim p* = 1 
Y+m Y-tm Y-+co Y-“, 

and 

lim c* = lim u* = 0, 
y+-a, y+-Co 

lim T* = K 
T +> lim p* = 5. (15) 

y+-00 y+-m 

Far below the mixing region the fluid is at rest 
and is composed only of species 2, i.e. c- = 
U- = 0. It should be emphasized that the method 
of solution to be presented here is not limited 
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to the particular group of conditions set forth 
in equations (15). 

f, c*, p*T* and T* are assumed to be 
expandable in powers of c+. The equations and 
boundary conditions for the initial approxi- 
mation to equations (11) through (15) are 

(16) 

(17) 

= 0 (18) 

(p*T*), = 1 (19) 

’ 
lim c* = 1 0 Y lim c* = 0 0 2 (20) 
9-m q*-cc 

lim T,* = 1 and lim T* = r 
0 T +’ 

9-+m 4*-a, 

The third boundary condition for fo may 
be arbitrarily chosen for convenience. This 
circumstance is discussed by Crane [6] and will 
not be repeated here. The essential fact is that 
the boundary-layer equations and boundary 
conditions have no knowledge of the small 
pressure difference that actually exists between 
the streams and the value of 4 that identifies the 
dividing streamline is unknown. A solution 
f,(q) generates an infinity of solutions f, (q + a), 
where a is an arbitrary constant. Equation (17). 
the momentum equation, is now decoupled 
from the system and may be solved indepen- 
dently of the others. Once f, has been deter- 
mined, the species continuity equation, (16) 
can be solved for ct and also the energy 
equation, (18), can be solved for T:. 

The momentum equation 
The method for solving the momentum 

equation, (17), is as follows. Let < = bq and put 
f,(q) = bJ(5). The momentum equation is 

unchanged and b is determined from 

lim bZ df, = 1 

5-m d5 ’ (21) 

The boundary condition at minus infinity is still 

(22) 

The third boundary condition onjb is chosen 
to be 

lim Jb(t) = - 1. (23) 
<--cc 

The motivation for introducing b and f0 derives 
from the fact that boundary conditions are 
imposed on f, both at plus and minus infinity. 
In order to avoid starting a solution at minus 
infinity, another at plus infinity and joining them 
at some finite value of the coordinate 5, one 
computes j0 somewhat arbitrarily at minus 
infinity and continues it to positive values of 5 
large enough such that dJb/d< is sensibly 
constant. This asymptotic value approached by 
df,/dt determines a simple scale factor (see 
equation 21) that enables one to obtain f,(q). 
This is simply the conversion of a two-point 
boundary value problem to an initial-value 
problem. Similar circumstances motivate the 
methods of solution for both the concentration 
and the temperature. For < 6 0 the solution is 

where ir = 1 and for n > 2 
II-1 

A,n*(n - 1) + 1 Ajj201_j = 0. 
j=l i 

(24) 

One can demonstrate the convergence of 

by noting that for n = 1 and n = 2 

IA”1 < (9.3. 
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Assume that forj = 1,2, . . , n - 1 

then 

IM G $_ 1)9 (9 
n(2n - l)(n - 1) 

6 

or 

This technique is closely related to the one 
used by Weyl [ll] to show that Blasius’ power 
series has a finite radius of convergence. It may 
be used to demonstrate the convergence of the 
other series encountered in this analysis, but the 
details will not be carried out here. 

For 5 > O,J, is given by 

f, = “f, %T 

a,, CQ and 01~ are determined from the solution 
for 5 ,< 0. For n > 0 the recursion relation is 
- (n + 3)(n + 2)(n + l)or,,J 

=j~oaj+2an-j 0’ + 2)o’ + l). (26) 

This power series has a finite radius of 
convergence whose value is near 3.0. Meksyn 
[12] has shown that the solution of Blasius’ 
equation has singularities (poles) at approxi- 
mately -3.1, -3.1 exp (2rci/3) and -3.1 
exp (47ci/3). The location of these singularities 
suggests that the power-series solution whose 
center is at the origin, 5 = 0, may be extended 
by a second power series whose center is 
at 5 = 2.5 (for example). The recursion rela- 
tion for the second power series is identical 
to that of the first power series. The series 
centered at 2.5 will also have a finite radius of 
convergence, but it will enable one to compute 
f0 for values of 5 beyond 5.0. The circumstance 
that the series forjo, equation (25), should have a 
finite radius of convergence is not expected on 
physical grounds, and one can avoid the 
difficulties imposed by the singularities in the 

complex plane by simply redefining the origin 
of a power-series expansion. Using simple 
power series solutions, 3, may be easily com- 
puted from t; = 0 until those values of 5 are 
reached at whichjo is behaving in an asymptotic 
manner, i.e. dQdr is sensibly constant. For a 
detailed consideration of the asymptotic be- 
havior ofjb, the reader is referred to Lock [3]. 

Values offO, d f,/dq and d2 fJdr2 are given in 
Table 1. Numerical results have been obtained 
by summing the relevant series on an IBM 7094 
computer. The convergence of the series solu- 
tions is quite rapid and the technique of shifting 
the origin of the power series removes any 
artificial limitations on such a solution. The 

Table 1. The uelocity 

rl 

- 20.0 -0.8757 
-15.0 - 0.8757 
- 10.0 - 0.8756 

- 9.0 -0.8754 
- 8.0 - 0.8750 
- 7.0 - 0.8738 
-6.0 -0.8712 
- 5.0 - 0.8648 
-4.6 - 0.8602 
-4.2 -0.8538 
-3.8 - 0.8446 
-3.4 -0.8317 
-3.0 -0.8136 
-2.6 -0.7881 
-2.2 - 0.7527 
- 1.8 - 0.7036 
-1.4 - 0.6362 
-1.0 -0.5451 
-0.6 - 0.4237 
-0.2 - 0.2659 

0.0 -0.1715 
0.2 - 0.0662 
0.6 +0,1781 
1.0 04462 
1.4 0.7928 
1.8 1.1495 
2.2 1.5268 
2.6 1.9164 
3.0 2.3121 
3.4 2.7089 
3.8 3.1102 
4.2 3.5101 
4.6 3.9101 
5.0 4.3101 

f,(v) 

0.0 
0.0 
0+001 
oaOO3 
oaOO7 
oaO17 
om40 
0.0096 
0.0135 
0.0191 
0.0270 
0.0381 
0.0535 
0.0748 
0.1040 
0.1435 
0.1957 
0.2629 
0.3464 
04450 
0.4989 
0.5546 
0.6668 
0.7713 
0.8581 
0.9214 
0.9616 
0.9836 
0.9939 
0.9980 
0.9995 
0.9999 
10000 
1@000 

0.0 
0.0 
OWO1 
0@003 
OWO6 
oaO15 
oGO35 
0.0083 
0.0117 
0.0165 
0.0232 
0.0325 
0.0452 
0.0623 
0.0848 
0.1135 
0.1485 
0.1882 
02287 
0.2629 
0.2747 
0.2813 
0.2755 
0.2425 
0.1888 
0.1281 
0.0751 
0.0377 
0.0162 
oGO59 
oaO19 
oaOO5 
oaOO1 
oQOOo 
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results show that the power series solution for 
f0 beyond < = 0 easily extends to those values 
of 5 where d&/d< is sensibly constant. Fig. 2 is 
a plot of f, and its derivative vs. q. The results 
also show that bZ = Q766936, the scale factor 
necessary for transforming from 3, to f,. The 
solution is in agreement with that of Lock [3]. 

FIG. 2. The velocity. 

The concentrution e~uutio~ 
The concentration, c,*, will be determined by 

solving 

(27) 

At minus inanity we have 

lim C, = 0 
c--m 

(28) 

and a second boundary condition is applied 
arbitrarily, also at minus infinity. One can be 
sure however, that F, will asymptotically ap- 
proach a constant value, E&co), as 5 --t co so 
that the concentration is finally determined by 

(29) 

As in the case of the momentum equation, 
the boundary condition at positive infinity 
motivates this method of solution. Only a 

constant of proportionality separates Co from 
c,*. Once this proportionality factor, C,,(co), has 
been determined, equation (29) enables one to 
satisfy the boundary condition on c,*, equation 

(20). 
For 5 < 0 

2, = exp t@c) aQJ exp (n0 

/I, is arbitrarily taken to be 

(30) 

(31) 

and & is then equal to - 2,. For n 2 2 the 
recursion relation is 

p = - BOSC2~” 5% 
n n(n + SC) - n(n + SC) 

jzl fi + “1 PjL j 

For < 2 0, ?,, is determined from 

(32) 

where ye and y1 are determined from the solution 
for 5 < 0. For n > 0 we have 

Y - 
-SC i 

?I+2 =cn + 2jtn + 1) j=O Yj+lG + l)%-j. (34) 

As in the case ofT0 this power series has a finite 
radius of convergence also about 3. The value of 
the radius of convergence is insensitive to the 
value of SC, at least for those Schmidt numbers 
investigated. However, as with fO, C, may be 
computed beyond 5 = 5-O by centering a new 
expansion at < = 25 The recursion relation is 
not altered by shifting the origin of the power 
series. Values of c,* and dc,*/ds are given in 
Table 2 with SC as a parameter. A plot of c,* 
appears in Fig. 3 for various values of SC. The 
power series solution satisfactorily computes 
&, from 5 = 0 to those values of 5 at which C, 
is sensibly constant. 
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Table 2. The concentration and its derivative 

1 

- 20.0 00001 0mOO 0.0 0mOO 0.0 ONI 
- 150 00009 00004 0.0 0mOO 0.0 00000 
- 10.0 00082 00036 00001 O@OOl 0.0 0.0000 

-9.0 0.0127 00056 00003 00003 0.0 O@OOO 
-8.0 0.0197 0.0086 00007 00006 0.0 00000 
- 7.0 0.0306 0.0134 0.0017 00015 OQOOl 00001 
-6.0 0.0474 0.0207 0.0040 0.0035 0@004 OQOO5 
- 5.0 0.0733 0.0320 ON)96 0@083 OQO14 00018 
-4.6 0.0873 0.0380 0.0135 0.0117 O+JO23 00030 
-4.2 0.1182 0.0451 0.0191 0.0165 0@039 OQO50 
-3.8 0.1235 0.0534 0.0270 0.0232 0.0065 00084 
- 3.4 0.1467 0.0632 0.0381 0.0325 0.0109 0.0139 
- 3.0 0.1742 0.0745 0.0535 00452 0.0181 0.0227 
-2.6 0.2065 0.0874 0.0748 0.0623 0.0297 00367 
-2.2 0.2444 0.1020 0.1040 0.0848 0.0485 0.0584 
- 1.8 0.2883 0.1180 0.1435 0.1135 0.0778 0.0904 
- 1.4 0.3389 0.1350 0.1957 0.1485 0.1225 0.1353 
-1.0 0.3963 0.1520 0.2629 0.1882 0.1878 0.1931 
-0.6 0.4603 0.1675 0.3464 0.2287 0.2780 0.2586 
-0.2 0.5299 0.1796 04450 0.2629 0.3939 0.3187 

0.0 0.5662 0.1836 0.4989 0.2747 0.4560 0.3403 
0.2 06032 0.1858 0.5546 0.2813 0.5295 0.3528 
0.6 0.6775 0.1839 0.6668 0.2755 0.6701 0.3420 
1.0 0.7491 0.1725 0.7713 0.2425 0.7964 0.2824 
1.4 0.8143 0.1522 0.8581 0.1888 0.8921 0.1939 
1.8 0.8700 0.1254 0.9214 0.1281 0.9520 0.1084 
2.2 0.9143 0.0960 0.9616 0.0751 0.9824 00486 
2.6 0.9470 0.0680 0.9836 0.0377 09947 0.0173 
3.0 0.9693 0.0446 0.9939 0.0162 0.9987 0.0049 
3.4 0.9834 0.0270 0.9980 0.0059 0.9998 0.0011 
3.8 0.9916 0.0151 0.9995 0.0019 lN100 OQOO2 
4.2 0.9961 0.0078 09999 0@005 1QOOO OWOO 
4.6 0.9983 0.0037 10000 OQOOl 1QOOO OQOOO 
5.0 0.9993 00016 10000 OQOOO 1QOOO OQOOO 
5.4 0.9997 omO7 1mOO OmOO 1mOO oQOOo 
5.8 0.9999 00002 10000 omOO 1mOO 0mOO 
6.2 10000 omO1 1OOOo 0QOOO 1mOO 0mOO 
6.6 1mOo 0~0000 1~0000 00000 1mOO 0mOO 

SC = 0.5 SC = 1.0 SC = 1.5 

dc: 
c%) - 

dc: 

dtl 
cm - 

dv 

dc: 
cf(v) - 

dtl 

The temperature equation 
The solution for the temperature proceeds 

in a manner similar to that for the velocity and 
concentration. The differential equation for T, is 

lim T, = 0 lim T,=g- 1. (38) 
<+-00 s-m 

The two-point boundary value problem for 
T,* has been recast so that the solution may be 
started at minus infinity without specifying a 
value for the parameter T-,/T+ Denote 

+ Pr 

-8 -7 -6 -5 -4 -3 -2 -I 0 I 2 3 4 5 6’ 

FIG. 3. The concentration. 

and the boundary conditions are 

lim Tb = 1 lim T* = K. 0 
5-m 5-m Ti 

(39) 

The homogeneous part of equation (35) is 
essentially identical to the equation for C,,, but 
the temperature equation is distinguished by the 
presence of an inhomogeneous term. Let 

T:=${T,+l) 

so that the differential equation and boundary 
conditions satisfied by T, are 

+ +$+&b4)(d$J = o 
(37) 

and 

U 
+2 T+ 

-_b4 
cp,T+ T- 



DIFFUSION ACROSS A LAMINAR 

by E. For a given value of Pr and E = 1, we 
generate a particular solution, i-,, that satisfies 
the boundary condition at minus infinity. We 
also compute a solution of the homogeneous 
equation, Tab which depends only on Pr and 
also satisfies the boundary condition at minus 
infinity. Then T, is given by 

7;,=E’i’o,fKr, (39) 

where K is determined from 
T+ - - 

T- - 1 = ET,,@) + KT,,(co). (@I 

The nond~ensional temperature T,*(q) and 
its derivative dT,*/dq can now be obtained from 
the transformations 

C(V) = $ {K%,@tt) + E%#v) + 11 (41) 

and 

b 

FIG. 4. The temperature. 

The existence of a boundary condition at plus 
inanity has again determined the method of 
solution. This boundary condition need only 
be taken into account in the last step of deter- 
mining K, equation (40). Neither the temperature 
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ratio T+/T- nor the parameter E enter into the 
computations for T,, and Toh. 

The homogeneous equation for T, is similar 
to the equation for E,, so that only the particular 
solution requires additional discussion. For 
5 < 0 the solution for T,, is 

?I r6 exp M) + exp (Vr) .EO o;, exp (&I (43) 

where 

z1 = 0 

1 + Pr 
*a = - prZ 

61 = -t-t%, 

and for n 5 2 

- Pr2aoAa Pr 
CT, = n(n + Pr) - n(n + Pr) 

n-1 

C Oj&-& + Pr) 
j=l 

(45) 
n-1 

- Pr 

‘= = n(n - Pr) c 
j&-j {Tj + jAln - j)“>* 

j=l 

This solution is valid only if Pr is not an integer. 
For the case Pr = 1, To,, is given by 

where z; is arbitrary and for n 22 

(46) 

n-1 

-1 r;t = _I___ 

n(n - 1) c 
j&-j (ri + jd@ - j)“). (47) 

j=1 

For 5 3 0 the power series solution for Top is 
appropriate and the solution is 

(48) 

where I?, and 8, are determined from the 
solution for 5 < 0 and for n 2 0 



e -Pr n 
n+Z = (n + 2)(n + 1) c 

{o’+ l)ej+lan-j 

j=O 

+ (j + l)(j + 2)(n - j + l)(n - j + 2) (49) 

X aj+z%j+z). 

Once again this power series does not con- 
verge beyond < equal approximately to 3. As 
with f0 and E,,, a new power series may be 
centered at r = 2.5 and values of T,, computed 
until the function is sensibly constant. 

Table 3 presents the values of T,,(bq), 
T,,(bq) and their derivatives with respect to 

Table 3. The temperature and its derivatiw. Pr = 0.76 

Techniques originally used by Blasius to solve 
the problem of the boundary layer adjacent to a 
flat plate, have been successfully applied to the 
zero-th approximation of a perturbation solu- 
tion of the laminar mixing of compressible fluid 
mixtures. Previous authors have made some use 
of these techniques, but only for the purpose 
of starting numerical integrations. The many 
series involved in this analysis are all rapidly 
convergent and the success of the method, in 
addition to the results themselves, is considered 
to be a significant aspect of the investigation. 
It is suggested that the techniques described in 
this paper may be used to determine the next 
approximation in the perturbation scheme. It is 
also reasonable to expect that these methods 
would be successful in solving other problems 
such as mass ablation in a boundary layer, where 
the differential equations would be the same and 
only the boundary conditions would bemodified. 

1 T&M 
b dT,,@v) 

Wv) 
- 

- 20.0 - 0~0000 -04000 00000 ooooo 
- 15.0 -O@tOl -0@001 OWOl 0mo1 
- 10.0 - 00039 - 0.0026 oKr39 OX026 

- 9.0 - 00076 -0W51 0.0076 0.0051 
- 8.0 - 0.0148 - 00099 0.0148 00099 
-7.0 - 0.0289 - 0.0192 0.0289 0.0192 
-6.0 - 0.0561 - 0.0372 0.0561 0.0372 
- 5.0 -0.1089 - 0.0722 0.1089 0.072 1 
-46 -0.1419 - 0.0938 0.1418 0.0937 
-4.2 -0.1848 -0.1219 0.1846 0.1215 
-3.8 - 0.2405 -0.1580 0.2401 0.1574 
-3.4 -0.3126 - 0.2043 0.3118 0.2030 
- 3.0 - 0.4056 - 0.2633 0,404 1 0.2608 
-2.6 - 0.5253 -0.3376 0.5223 0.3327 
-2.2 -0.6781 - 0.4299 0.6725 0.4407 
- 1.8 -0.8719 - 0.5423 0.8611 0.5251 
- 1.4 - 1.1147 - 0.6748 1.0945 0.6440 
-1.0 - 1.4140 - 0.8240 1.3775 0.7712 
-0.6 - 1.7748 - 0.9797 1.7110 0.8943 
-@2 -2.1960 - I.1220 2.0899 0.9942 

0.0 - 2.4263 - 1.1791 2.2923 I.0279 
+ 0.2 - 2.6666 - 1.2210 2.5000 1.0468 

0.6 -3.1623 - 1.2419 2.9180 1.0303 
1.0 - 3.6464 - 1.1605 3.3137 0.9352 

1.4 - 4.0776 -0.9812 3.6571 0.7730 
1.8 - 4.4233 -0.7418 3.9274 0.5757 
2.2 - 4.6705 - 0.4983 4.2011 0.3835 
2.6 -4.8276 - 0.2965 4.2390 0.2273 
3.0 -4.9161 -0.1561 4.3068 0.1195 
3.4 - 4.9602 - 0.0729 4.3406 0.0557 
3.8 - 4.9797 - 0.0301 4.3555 0.0230 
4.2 - 4.9874 -0.0110 4.3614 0.0084 
4.6 - 4.9901 - 0.0036 4.3634 0.0027 
5.0 - 4.9909 -O@JlO 4.3640 OWO8 
5.4 -4.9911 - 0~0003 4.3642 0.0002 
5.8 -49912 -o+nlO1 4.3642 0~0000 

4. H. G~RTLER, 2. Angew. Math. Mxh. 22, 244 (1942). 
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R&um&-Le probl&me ttudiC ici est celui du mtlange laminaire de deux &coulements parallkles de mtlanges 
de tluides compressibles, B deux constituants, par exemple de I’air et quelque impureth L’intCr&t principal 
est la description du processus de mtlange et son effet sur la concentration de chaque espece du fluide. 
La concentration de l’un des constituants du mtlange binaire est supposb faible et une solution du type 
g perturbation est entreprise en prenant la concentration comme petit parambtre. L’approximation d’ordre 
z&o est dbveloppk en d&ail. Les nombres de Schmidt et de Prandtl sont des constantes arbitraires, on 
suppose que la viscosite varie linkairement avec la temptrature, et les deux constituants du mtlange fluide 
obCissent chacun & I’tquation d’ttat des gaz parfaits. On obtient une solution analytique pour l’approxi- 
mation initiale au moyen de dtveloppements en sCrie rapidement convergents. Seuls les nombres de 

Schmidt et de Prandtl influencent le calcul des solutions fondamentales. 

Zusammenfassuqg-Es wird das Problem der laminaren Vermischung zweier Parallelstriime kompressibler 
Gasgemische behandelt. Jeder der beiden Strijme besteht aus zwei Komponenten, z.B. aus Luft und einem 
Anteil eines anderen Gases. Das Hauptziel ist es, den Vermischungsprozess und seinen Einlluss auf die 
Konzentration jeder Komponente zu beschreiben. Die Konzentration einer der beiden Komponenten 
der binilren Mischung wird klein angenommen und es wird, mit dieser Konzentration als kleinem Para- 
meter, eine St6rlGsung eingefihrt. Die nullte Ntiherung wird detailliert angegeben. Die Schmidt-Zahl und 
die Prandtl-Zahl sind willkiirliche Konstante. Die Temperaturabhlngigkeit der Viskositlt wird linear 
angenommen. 

Jede der beiden Komponenten des Gemisches geniigt fiir sich einer vollkommenen Zustandsgleichung. 
Eine analytische LGsung fiir die Anfangsnlherung ergibt sich mit Hilfe stark konvergierender Reihen. 
Fiir die Berechnung fundamentaler Lijsungen sind nur die Schmidt-Zahl und die Prandtl-Zahl von Einfluss. 

AHEOT~~HSI-B CTaTbe paccMaTpMBaeTcR aaJJasa JIaMAHapHOrO CMeUIIIBaHIlR AByX napan- 
nenbHbtx IIOTOKOB cmmaei+mx ~H~KMX cMece#. IIOT~KA FIBJIRI~T~R ~ByxKoimoKeKTKbm~, 
HaIIpHMep,BOBflyX C KaKO%HlI6yAb IIpKMeCbW. 

OCHOBHOB qenbm paboTH RBmeTcn onmame npouecca nepeMemfBaHnR II ero BJIAIIHHR 
Ha KOH4eHTpaqHtO KaHcROrO KOMIIOHeHTa, KOTOpaR ItpAHHMaeTCfI Ke6OJIbIKOti. Saaa'Ia, me 
KOHIJeHTpaqHK HBJIFIeTCH MaJIbIM IIapaMeTpOM, peLIlaeTCH MeTOHOM BO3MytL(eKIIti. npI4- 
BOAATCH no~po6noe peLUeHMe HJIH HJ'JE!BOI'O npH6nwmeHAn. %CJIa ~MEi~Ta H nPaHJ.(TJlR 

npOM3BOJIbHbI3 IIOCTOHHHbIe, BR3KOCTb JIllHeitHO I13MeHReTCR C Tt?MIIepaTJ'pOfi, 3 o6a KOMIIO- 

HeHT3 B OTRWIbHOCTIl OIIRCbIB3lOTCH ypaBHt?HIleM COCTORHMIJ tI~eaJIbHOI'0 El38. C nOMO~bI0 
6bIc~p0 CxoARlrlHxcn prrfioB nonyseno aHanRTnqecKoe pemeaae AJI~ Hynenoro np146nm~e~m. 

PeIUeHHe OCHoBHbIX ypaBHeHHti 33BBCHT TOJIbKO OT %fCWI mMMJ(Ta M npaHjL(TJIH. 


