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Abstract—The problem considered in this paper is the laminar mixing of two parallel streams of com-
pressible fluid mixtures. The streams are two component compressible fluids, e.g. air and some contaminant.
The primary interest is to describe the mixing process and its effect on the concentration of each species
composing the fluid. The concentration of one of the components of the binary mixture is assumed to be
small, and a perturbation solution, with the concentration as the small parameter, is initiated. The zero-th
approximation is carried out in detail. The Schmidt number and the Prandtl number are arbitrary constants,
the viscosity is assumed to vary linearly with temperature, and the two components of the fluid mixture
individually obey a perfect gas equation of state. An analytical solution to the initial approximation is
obtained by means of rapidly convergent series expansions. Only the Schmidt number and the Prandtl
number influence the computation of fundamental solutions.

function defined by

Y* = J/@x*) fn);

scale factor in the solution of

NOMENCLATURE £

o

o, mass density; .
u, x component of velocity; fo (see equation 21);
v, y component of velocity; g, modified similarity parameter,
¢, mass fraction; ¢ = bn;
i, dynamic viscosity; I function defined by f, = (1/b) f,;
v kinematic viscosity ; S, function directly proportional to
D, binary diffusion coefficient ; _ ¢5 (see equation 29);
Se, Schmidt number, v/D, ,; I, functlon+deﬁ_ned3y B
Cp specific heat at constant pressure; T~/ T ) TS -1 = 1;
T, temperature; E, parameter in the solution of the
Pr Prandtl number temperature equation given by
’ ’ +2 + =y B
(Wk) {c,, + clc,, — ¢} _ (“. /ep, T )(T /T™)b%; .
k, thermal conductivity; 1,p a particular solution of equation
R, gas constant; -~ (37); .
P pressure; T a homogeneous solution of equa-
h, enthalpy; tion (37); ‘ ' _
Y, transformed y coordinate (see K, a constant in the solution of T,
equations 9); (see equation 39).
v, stream function (see equations 9); )
% similarity parameter, Y*(2x*)~%;  Subscripts _ ‘
r refers to the particular solution
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ment of Applied Mathematics and Theoretical Physics, h, refers to the homogeneous solu-
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tion of a differential equation;
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land 2, refer to the two components of
the fluid mixture;

0, refers to the initial approxima-
tion.

Superscripts

+, refers to conditions far from the
mixing region in the upper stream ;

— refers to conditions far from the
mixing region in the lower stream;

*, refers to a dimensionless variable.

INTRODUCTION

SEVERAL authors have considered the problem
of the laminar boundary layer between parallel
streams. Chapman [1] investigated the mixing
of a high-velocity stream with a region of fluid
at rest. His analysis assumed that the Prandtl
number was unity and the method of solution
involved repeated quadratures. Lessen [2],
in a paper on the stability of the flow of a stream
of incompressible fluid over a layer of the same
fluid at rest, considered analytical methods
only far enough to reduce the problem to a
routine numerical solution. The more general
problem, when the two fluids are of different
densities and viscosities, was solved by Lock
[3] who also used analytical methods only to
facilitate a numerical integration.

The mixing of two semi-infinite incompressible
streams has also been studied by Gortler [4] and
Pai [5]. Gortler’s method assumes that the
streams have nearly identical velocities so
that a series expansion in powers of a small
parameter, which is the dimensionless velocity
difference between the streams, is used. Crane
[6] has used a double series of powers of two
parameters and the method of Gortler to deal
with the compressible mixing problem.

The problem considered in this paper is the
two-dimensional laminar mixing of two parallel
streams of compressible fluid mixtures. Each
stream is a two-component compressible fluid,
e.g air and some nonreacting contaminant.
Far from the mixing region the properties of
each stream, such as velocity, temperature.
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density, contaminant concentration, etc., are
constant.

The conservation equations describing the
mixing process must be solved subject to the
conditions that the velocity, temperature. den-
sity and concentration both far above and
below the mixing region must tend to be
prescribed constant values.

Two distinct physical situations arise which
lead to perturbation solutions of the general
mixing problems; namely when the streams
have nearly equal contaminant concentration
and when the lower stream is at rest and un-
contaminated, while in the upper stream, the
concentration of contaminant is very small.
The bulk of this paper will deal with the latter
case, for which the self-similar solution to the
initial approximation, (for ¢ ~ T, Pr = constant
and Sc = constant), is calculated by a method of
power-series expansion and analytic continua-
tion. This method is closely related to the method
used by Blasius [7] in his famous paper on the
solution of the boundary layer adjacent to a
flat plate.

PROBLEM FORMULATION

Consider the two-dimensional mixing of two
streams of fluid. Far from the mixing region the
upper fluid has velocity u*, temperature T+,
density p*, viscosity u* and contaminant con-
centration c*. The velocity u™* is directed along
the positive x-axis and the positive y-axis points
into the upper fluid. The lower fluid has charac-
teristics u~, T™, p~, p~ and ¢~ far from the
mixing region. The problem is depicted in Fig. 1.

The equations of conservation of mass,
momentum and energy for a multicomponent
fluid are derived in Truesdell and Toupin [8]
from a continuum point of view and in the text
by Hirschfelder et al.[9] from a microscopic
viewpoint. It is assumed here that the boundary
layer approximation to these equations is
applicable. A boundary layer analysis is justified
far downstream from the onset of the mixing
region. The appropriate equations are (see Fay
and Riddell [10])
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F1G. 1. The geometry of the mixing problem.
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and the equation of state is assumed to be

p = constant = pTR, (1 + uc) (5)
R,
i.e. each component of the mixture is a perfect
gas with constant specific heat.
¢ is understood to be the mass concentration
of species 1. Species 2 is usually considered to be
air and species 1 as contaminant. This system of
equations will be investigated under the assump-
tion that Pr and Sc are constants.

o
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The boundary conditions are

T
lim =1, lm-=1  limeop =1
y— o y—+ o y—= o
lim < =1. lim —=1
yo—w € yo o U
and
T
lim —— = 1. 6
lim o (6)

METHOD OF SOLUTION

The solutions to be derived here are for
arbitrary, but constant Schmidt number and
Prandtl number. The cases where Sc and Pr are
unity merit special mention because of the
simplifications that occur.

If the Schmidt number is 1, the species
continuity equation, (2), the momentum equa-
tion, (3), and the boundary conditions, (6),
require that

Thus the concentration is determined immedi-
ately from the velocity. If the energy equation is
rewritten in terms of the total enthalpy, h + u?/2,
the equation shows that if both Sc and Pr are
unity

u—u  (h+u2) — (h+ u?2)”
ut —um (h+ w22 — (h+ ui2)

)

For this special case both the concentration and
temperature have been related to the velocity
and it is only necessary to solve the momentum
equation. However, values of Sc and Pr different
from unity are of interest and each of the
equations (1) through (5) will have to be dealt
with.

The system of equations describing the
mixing problem, equations (1) through (5), is
simplified by introducing the Howarth-Dorod-
nitsyn variables and the stream function. Thus
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let

y

p pt oY
Y=|tdy, wu=E7F
J’P+ Y p Oy
At
and  v=—L ¥

p ox

It is also convenient to introduce dimensionless
variables, so that

u T c
u*=u—+, T*—_—-F, C*=—C—+

p u
p*=— x* = x/L p* =

p* ut

Note that L is a reference length, and A is the
constant of proportionality in the assumed
relation

Ji T
For a discussion of this relation see Chapman

[1].

The differential equations and boundary
conditions admit solutions in terms of the
similarity variable n = Y*(2x*)™%, so that with
y* = J(2x*¥) f(n) the system of equations
becomes

b tals w)0 o

P88 () 2
(emgme) A
o (ar)

Cpi —Cpr o+ % _d_ p*T*d_Tt
+<1+ c ”)dn( Pr dn

p2

(12)

¢, —C 1 1 dT*dc*
+ pP1 P2 +f - o *T* o=
< Cp, )C (PV+SC> dn dy
and (13)
R, - R R, -R
*TH(1 + ———2ctc*) =1 + 12 c*
p ( R, c’c + R, C
(14)

The energy equation is decoupled from the
system since only the product pT appears in the
species continuity, momentum and state
equations.

The system of ordinary differential equations,
equation (11) through equation (14), may be
solved as follows. If ¢* # 0 and ¢~ # 0 and the
streams have nearly equal concentration, then
one may define an expansion parameter as
(¢t —c Wt + ¢ ). U =0and c* is small,
c* isitself an expansion parameter. The different
expansion parameters that may be defined are
not crucial in themselves, since a choice between
them will be dictated by the physical situation.
Of greater significance is the method of solving
the perturbed equations whose form will be
independent of the parameter chosen. In parti-
cular, these expansions will lead one to the
problem of solving the Blasius equation for the
velocity. For the solution of this equation one
may follow Gortler and expand in powers of
(ut —u7)ut + u"), if this parameter is indeed
small, or use the classical method of Blasius.

In this paper attention is focused on the
problem for which the boundary conditions are

lim ¢* = lim u* = lim T* = lim p* =

y-+ y— o yo o y— o
and
lim ¢*= lim u*=0,
y=* - yr— o
. T . p-
im T*=_— lim p* = —. (15)
o o T* y— o0 p*

Far below the mixing region the fluid is at rest
and is composed only of species 2, ie. ¢~ =
u~ = 0. It should be emphasized that the method
of solution to be presented here is not limited
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to the particular group of conditions set forth
in equations (15).

f, c* p*T* and T* are assumed to be
expandable in powers of ¢*. The equations and
boundary conditions for the initial approxi-
mation to equations (11) through (15) are

de* 1 d3%c*
o, —S% 16
fo dn + Sc dn? (16)
a2 dif
2 =0 17
dT*  [(d*f£\* u*’ 1 d*T*
. : —S o0 (18
2 dn +(d}12> c,,T* +Pr dn? (18)
(p*T*), =1 (19
lim (df°> =1, lim (dﬁ’> =0, |
n-o\ 41 n--w\ 41
limc* =1,  lim c¢* =0, o
n— o n——w
_— T
limT§=1 and Ilm T% = T
71— ® n—+—o J

The third boundary condition for f, may
be arbitrarily chosen for convenience. This
circumstance is discussed by Crane [6] and will
not be repeated here. The essential fact is that
the boundary-layer equations and boundary
conditions have no knowledge of the small
pressure difference that actually exists between
the streams and the value of  that identifies the
dividing streamline is unknown. A solution
fo(n) generates an infinity of solutions f,(n + a),
where a is an arbitrary constant. Equation (17),
the momentum equation, is now decoupled
from the system and may be solved indepen-
dently of the others. Once f, has been deter-
mined, the species continuity equation, (16),
can be solved for ¢} and also the energy
equation, (18), can be solved for T*.

The momentum equation

The method for solving the momentum
equation, (17), is as follows. Let ¢ = by and put
L) =bf(6). The momentum equation is

unchanged and b is determined from

df,
lim b2 —2 = 1. (21)
t~w A
The boundary condition at minus infinity is still
. df,
lim == (22)
[Sndiadi: dé

The third boundary condition on f, is chosen
to be

lim f(§)= -1

go-w

(23)

The motivation for introducing b and f, derives
from the fact that boundary conditions are
imposed on f, both at plus and minus infinity.
In order to avoid starting a solution at minus
infinity, another at plus infinity and joining them
at some finite value of the coordinate &, one
computes f, somewhat arbitrarily at minus
infinity and continues it to positive values of £
large enough such that df,/d¢ is sensibly
constant. This asymptotic value approached by
df,/d¢ determines a simple scale factor (see
equation 21) that enables one to obtain f(y).
This is simply the conversion of a two-point
boundary value problem to an initial-value
problem. Similar circumstances motivate the
methods of solution for both the concentration
and the temperature. For & < 0 the solution is

ff=-1+ i A, exp (né)

where Ay =1 and for nz2;: (24)

n—1
Ai¥(n— 1)+ Y A%, ;=0.
i=1
One can demonstrate the convergence of
A
ngl "

by noting that forn = 1 and n = 2
2] < @r3.
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Assume thatforj=1,2,...,n—1
|4, < @y3

then

1 Lh2n — 1)(n—1)
n*(n — 1)9(%) 6

] <

or
2] < 360"
This technique is closely related to the one
used by Weyl [11] to show that Blasius’ power
series has a finite radius of convergence. It may
be used to demonstrate the convergence of the
other series encountered in this analysis, but the
details will not be carried out here.
For ¢ > 0, f, is given by

= 3w 5)

o, oy and o, are determined from the solution
for £ £ 0. For n > 0 the recursion relation is
—(n+3)n+2)n+ o, s

=Y Guao, G+ 26+ (26)
=

This power series has a finite radius of
convergence whose value is near 3-0. Meksyn
[12] has shown that the solution of Blasius’
equation has singularities (poles) at approxi-
mately —31, —31 exp (2mi/3) and —31
exp (4mi/3). The location of these singularities
suggests that the power-series solution whose
center is at the origin, ¢ = 0, may be extended
by a second power series whose center is
at £ = 25 (for example). The recursion rela-
tion for the second power series is identical
to that of the first power series. The series
centered at 2-5 will also have a finite radius of
convergence, but it will enable one to compute
f, for values of ¢ beyond 5-0. The circumstance
that the series for £, equation (25), should have a
finite radius of convergence is not expected on
physical grounds, and one can avoid the
difficulties imposed by the singularities in the
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complex plane by simply redefining the origin
of a power-series expansion. Using simple
power series solutions, f, may be easily com-
puted from £ = 0 until those values of ¢ are
reached at which f, is behaving in an asymptotic
manner, ie. df,/d¢ is sensibly constant. For a
detailed consideration of the asymptotic be-
havior of f,, the reader is referred to Lock [3].

Values off,, d f,/dn and d? f,/dn? are given in
Table 1. Numerical results have been obtained
by summing the relevant series on an IBM 7094
computer. The convergence of the series solu-
tions is quite rapid and the technique of shifting
the origin of the power series removes any
artificial limitations on such a solution. The

Table 1. The velocity

df, d’f,

n AL an an
-200 —0-8757 0-0 00
—150 —0-8757 00 00
—100 —0-8756 00001 0-0001

-90 —0-8754 00003 0-0003
—-80 —~ 08750 00007 0-0006
-70 —0-8738 00017 00015
—60 —0-8712 0-0040 00035
—-50 ~0-8648 0-0096 0-0083
—46 —0-8602 00135 00117
—42 —0-8538 00191 0-0165
—38 —0-8446 00270 00232
—34 —0-8317 0-0381 00325
-30 —08136 00535 00452
—26 —0-7881 00748 00623
—22 —07527 01040 0-0848
~18 ~0-7036 01435 01135
—14 —0-6362 0-1957 0-1485
-10 —0-5451 0-2629 0-1882
-06 —04237 0-3464 0-2287
-02 ~0-2659 0-4450 0-2629

00 —0-1715 0-4989 02747

02 —00662 0-5546 02813

06 +0-1781 06668 02755

10 0-4462 07713 02425
14 0-7928 0-8581 0-1888
1-8 11495 09214 0-1281
22 15268 0-9616 00751
26 19164 0-9836 00377
30 23121 09939 0-0162
34 2-7089 0-9980 0-0059
38 31102 0-9995 00019
42 3:5101 09999 0-0005
46 39101 1-0000 0-0001
50 4-3101 1-0000 0-0000
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results show that the power series solution for
£, beyond ¢ = 0 easily extends to those values
of & where d f,/d¢ is sensibly constant. Fig. 2 is
a plot of £, and its derivative vs. 5. The results
also show that b? = 0-766936, the scale factor
necessary for transforming from f, to f,. The
solution is in agreement with that of Lock [3].

-~
1 ©
INNY

3-(1 /
z-oT / )

—/

1 i i
SAS T T s 4
-10]

FiG. 2. The velocity.

S8

tnl-
3

The concentration equation
The concentration, ¢¥, will be determined by
solving

de, d?%,
SCf;—df-Fd—éz“-wO. 27
At minus infinity we have
lim ¢é,=0
e (28)

and a second boundary condition is applied
arbitrarily, also at minus infinity. One can be
sure however, that ¢, will asymptotically ap-
proach a constant value, ¢,(x), as { - @ so
that the concentration is finally determined by

(&)

Eq(o0)

cgln) = (29)

As in the case of the momentum equation,
the boundary condition at positive infinity
motivates this method of solution. Only a
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constant of proportionality separates ¢, from
c¥. Once this proportionality factor, ¢,(c0), has
been determined, equation (29) enables one to
satisfy the boundary condition on c¥, equation
(20).

Foré <0
¢ =exp(ESe) 3 frexp(nd).  (30)
B, is arbitrarily taken to be
1+ Sc
== 1
B = (1)

and B is then equal to — A;. For n = 2 the
recursion relation is
g = — B,Sc*4, 8¢

" nn+Sc) nn+ Sc)

n—1
‘21 G + S¢) Bidy— . (32)
=
For & = 0, ¢, is determined from
Co= ) 7L (33)

il

n=0

where y, and y, are determined from the solution
for ¢ £ 0. For n > 0 we have

n

_ - Sc Z .
Pn+2 ——(n—;m S0 Vieal + Do,y (34)

As in the case of f, this power series has a finite
radius of convergence also about 3. The value of
the radius of convergence is insensitive to the
value of Sc, at least for those Schmidt numbers
investigated. However, as with f, ¢, may be
computed beyond & = 50 by centering a new
expansion at £ = 2-5. The recursion relation is
not altered by shifting the origin of the power
series. Values of ¢* and dc*/dy are given in
Table 2 with Sc as a parameter. A plot of c*
appears in Fig. 3 for various values of Sc. The
power series solution satisfactorily computes
¢, from ¢ = 0 to those values of ¢ at which ¢,
is sensibly constant.
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Table 2. The concentration and its derivative

Sc =05 Sc = 10 Sc =15

*(n) dc* ) dc¥ ) dc¥
¢ — ¢
1 o dn o\ dn o dn

GERALD SCHUBERT

I
|
@
L]
-o
w
&
~N
\

a8 097 /7
p—
,/

-200
—150
—10:0
-90
-80
—~70

0-0001
0-0009
0-0082
0-0127
00197
0-0306
0-0474
0-0733
0-0873
0-1182
0-1235
0-1467
01742
0-2065
0-2444
0-2883
0-3389
0-3963
0-4603
0-5299
00 0-5662
02 06032
06 06775
1-0 07491
1-4 08143
1-8  0-8700
22 09143
26 09470
30 09693
34 09834
3-8 09916
42 09961
4-6 09983
50 09993
54 09997
58 09999

0-0000 00
0-0004 00
0-0036
0-0056
0-0086
0-0134
0-0207
0-0320
0-0380
0-0451
0-0534
0-0632
0-0745
0-0874
0-1020
0-1180
0-1350
0-1520
01675
0-1796
0-1836
0-1858
0-1839
0-1725
0-1522
0-1254
0-0960
0-0680
0-0446
0-0270
0-0151
0-0078
0-0037
0-0016
0-0007
0-0002
0-0001
0-0000

0-0000 00
00000 00
0-0001 00
0-0003 00
00006 00
00015
0-0035
0-0083
0-0117
0-0165
0-0232
0-0325
0-0452
0-0623
0-0848
0-1135
0-1485
0-1882
0-2287
02629
02747
02813
0-2755
0-2425
0-1888
0-1281
0-0751
0-0377
0-0162
0-0059
0-0019
0-0005
0-0001
0-0000
0-0000
0-0000

0-0000
0-0000
0-0000
0-0000

0-0001
0-0005
0-0018
0-0030
0-0050
0-0084
0-0139
0-0227
0-0367
0-0584
0-0904
0-1353
0-1931
0-2586
0-3187
0-3403
0-3528
0-3420
0-2824
0-1939
0-1084
0-0486
0-0173

0-0011
0-0002
0-0000
0-0000
0-0000
0-0000
0-0000
0-0000

66 10000 0-0000

The temperature equation

The solution for the temperature proceeds
in a manner similar to that for the velocity and
concentration. The differential equation for T, is

d*T¥
de?

dT*
Prf:,

u+2 . de; 2
= 35
cpzT+b ( 0 ( )

+ Pr a2

/0'5

7 /i Lo3

/
-~ +— 02
e i’ /,’
/,/ ‘ '_01
- 4
— fiad 1 ! L 1

-8 -T -6 -5-4 -3 -2 -1 0 1| 2 3 4 5 6

FiG. 3. The concentration.
— -+
T, = ET,* KT,
and the boundary conditions are
T-
T

(39)

IimT¥ =1

g

lim T¥%=

o

(36)
The homogeneous part of equation (35) is
essentially identical to the equation for ¢,, but

the temperature equation is distinguished by the
presence of an inhomogeneous term. Let

T -
= iT 1

so that the differential equation and boundary
conditions satisfied by T, are

d2
dé +Pr f"
427,
T E -0 e

limT,=-———1.
im T, = o=

and

lim T,=0

g

(38)

The two-point boundary value problem for
T* has been recast so that the solution may be
started at minus infinity without specifying a
value for the parameter T~/T* Denote
ut’ I:b“
cp T+ T-
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by E. For a given value of Pr and E = 1, we
generate a particular solution, T, » that satisfies
the boundary condition at minus infinity. We
also compute a solution of the homogeneous
equation, T,, which depends only on Pr and
also satisfies the boundary condition at minus
infinity. Then T, is given by

T, = ET, + KT, (39)
where K is determined from
T — .
7= 1 = ET,(0) + KT (). (40)

The nondimensional temperature TX) and
its derivative dT¥/dy can now be obtained from
the transformations

TH0) = 25 (KTolbn) + ET,bm)+1} (4D

and
AT _ T~ fi, 9Talbn) o dT,bn)
g T d(bn) dibn) |
42)
-8 7 -6 -5 -4 -3 -2 - 0 1 2 3 4 5 6,?
3 ¥ ¥ H Yﬁ-é.?“‘
\ - £ =iQ

AN
.
)\

A\

-5
%

F1G. 4. The temperature.

The existence of a boundary condition at plus
infinity has again determined the method of
solution. This boundary condition need only
be taken into account in the last step of deter-
mining K, equation (40). Neither the temperature
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ratio TY/T ™ nor the parameter E enter into the
computations for T,, and T,

The homogeneous equation for T, is similar
to the equation for ¢,, so that only the particular
solution requires additional discussion. For
& < 0 the solution for T, is

2 t, exp (né) + exp (EP) 2’;0 o, exp(né)  (43)

where
Tl = O
1+ Pr
G, = — P?‘z (44)
gy = +/‘{1
and forn = 2
_ — Prlo,4, Pr
O = nin + Pry n{n+ Pr)
n—1
Y A, fj + Pr)
i=1 (45)
n—1
- Pr . . a2
T, = mz"lﬂ_‘j {Tj +_]l}?‘! —]) }
T=1

This solution is valid only if Pr is not an integer.
For the case Pr = 1, T, is given by

3. vaoxp (n2) (46)

where 7} is arbitrary and forn > 2

n-1

4 = — 1 5 £ . o 2

W= 1) E s T+ A = P} 47)
7T

For ¢ > 0 the power series solution for T, is
appropriate and the solution is

2. 08"
n=0

where 6, and 6, are determined from the
solution for ¢ £ 0 andforn > 0

(48)
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— Pr - .
Oniz = mz {0+ DO a,_;
7=0

++Di+2m—j+1Dn—-j+2) 49
X ij+2“n-j+2}~

Once again this power series does not con-
verge beyond ¢ equal approximately to 3. As
with f, and ¢,, a new power series may be
centered at £ = 2:5 and values of T,, computed
until the function is sensibly constant.

Table 3 presents the values of T, (bn).
T,,(bn) and their derivatives with respect to

Table 3. The temperature and its derivative, Pr = 0-76

- dT, (bn) = dT,(bn)
1 T, (bn) abn) T,u(bn) dbn)
—200 —00000  —00000 00000 0-0000
—150 -00001  —00001 0-0001 0-0001
—100 —00039  —00026 00039 0-0026
—90 —00076  —0:0051 00076 0-0051
—80 —00148  —00099 00148 0-0099
—70 —00289  —00192 00289 00192
—60 —00561  —00372 00561 00372
-50 —01089  —00722 01089 00721
—46 —01419  —00938 01418 0-0937
—42 ~01848 01219 01846 0-1215
—38 —02405  ~0-1580 02401 01574
~34  —03126 02043 03118 0-2030
~30 ~04056 —02633 04041 0-2608
—26 -05253 —03376 05223 03327
—22  —06781 —04299 06725 0-4407
—-18 —08719  —05423 0861l 0-5251
—14 —11147  —06748 10945 0-6440
~1:0 —14140  —0-8240 1:3775 0-7712
—06 —17748  —09797 17110 0-8943
—02 —21960  —11220 20899 09942
00 —24263 —11791 2:2923 10279
+02  —26666  —1:2210 25000 10468
06 —31623  —12419 29180 10303
10 —36464  —1-1605 33137 0-9352
14 —40776  —09812 36571 07730
18 —44233  —07418 39274 0-5757
22 —46705  —04983 42011 0-3835
26 —48276  —02965 42390 02273
30  —49161  —01561 43068 0-1195
34 —49602  —00729 43406 0-0557
38  —49797  —00301 43555 00230
42 —49874  -00110 43614 0-0084
46 —49901  —00036 43634 0-0027
50 —49909  —00010 43640 0-0008
54 —49911  —00003 43642 0-0002
58 —49912  —00001 43642 0-0000
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by for Pr = 0-76. Figure 4 depicts T,, vs. y for
Pr = 0760. For a given value of T*/T~ and
the parameter E, the constant K is determined
from equation (40) and then the expressions for
T¥n) and dT¥/dy can be calculated from
equations (41) and (42).

CONCLUSIONS

Techniques originally used by Blasius to solve
the problem of the boundary layer adjacent to a
flat plate, have been successfully applied to the
zero-th approximation of a perturbation solu-
tion of the laminar mixing of compressible fluid
mixtures. Previous authors have made some use
of these techniques, but only for the purpose
of starting numerical integrations. The many
series involved in this analysis are all rapidly
convergent and the success of the method, in
addition to the results themselves, is considered
to be a significant aspect of the investigation.
It is suggested that the techniques described in
this paper may be used to determine the next
approximation in the perturbation scheme. It is
also reasonable to expect that these methods
would be successful in solving other problems
such as mass ablation in a boundary layer, where
the differential equations would be the same and
only the boundary conditions would be modified.
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Résumé—Le probléme étudié ici est celui du mélange laminaire de deux écoulements paralléles de mélanges
de fluides compressibles, 4 deux constituants, par exemple de ’air et quelque impureté. L'intérét principal
est la description du processus de mélange et son effet sur la concentration de chaque espéce du fluide.
La concentration de I'un des constituants du mélange binaire est supposée faible et une solution du type
a perturbation est entreprise en prenant la concentration comme petit parameétre. L’approximation d’ordre
zéro est développée en détail. Les nombres de Schmidt et de Prandtl sont des constantes arbitraires, on
suppose que la viscosité varie linéairement avec la température, et les deux constituants du mélange fluide
obéissent chacun a I’équation d’état des gaz parfaits. On obtient une solution analytique pour I’approxi-
mation initiale au moyen de développements en série rapidement convergents. Seuls les nombres de
Schmidt et de Prandtl influencent le calcul des solutions fondamentales.

Zusammenfassung—FEs wird das Problem der laminaren Vermischung zweier Parallelstréme kompressibler
Gasgemische behandelt. Jeder der beiden Strome besteht aus zwei Komponenten, z.B. aus Luft und einem
Anteil eines anderen Gases. Das Hauptziel ist es, den Vermischungsprozess und seinen Einfluss auf die
Konzentration jeder Komponente zu beschreiben. Die Konzentration einer der beiden Komponenten
der binidren Mischung wird klein angenommen und es wird, mit dieser Konzentration als kleinem Para-
meter, eine Storlosung eingefithrt. Die nullte Naherung wird detailliert angegeben. Die Schmidt-Zahl und
die Prandtl-Zahl sind willkiirliche Konstante. Die Temperaturabhingigkeit der Viskositdt wird linear

angenommen.

Jede der beiden Komponenten des Gemisches geniigt fiir sich einer vollkommenen Zustandsgleichung.
Eine analytische Losung fiir die Anfangsniherung ergibt sich mit Hilfe stark konvergierender Reihen.
Fiir die Berechnung fundamentaler Lésungen sind nur die Schmidt-Zah! und die Prandtl-Zahl von Einfluss.

AHHOTEI{VH{—-B CTaTbe paccMaTpUBAETCA 3ajavYa JAMMHAPHOTO CMEIIWBAHMA ABYX mnapaj-
JeJbHHX INMOTOKOB CHMMAeMBIX HUAKUX cMecelt. IloTokm ABaATCA ABYXKOMIIOHEHTHHIMH

HAIpUMep, BO3AYX ¢ KAKOH-HUGYAL MpUMECHIO.

OcHOBHOIt 1les1bI0 paGoThl ABJIAETCA ONMCAHME NpoIlecca MepeMellMBAHNA U €ro BIMAHMA
Ha KOHUEHTPAIMI0 KAaKJOT0 KOMIIOHEHTA, KOTOpas NPMHMMAaeTcA HeGoabmioil. 3agada, rie
KOHLIEHTDAIMA HABJAETCA MaJBIM IIapaMeTpoM, pellaeTcA MeTORZOM BoamylueHuit. Ilpu-
BOTUTCA MOApPOGHOE pemieHMe AJdA Hydesporo npubmumakenud. Yumcna muara u Ilpanaraa
ITPOU3BOJBHEE TTOCTOAHHBIE, BASKOCTh JHHENHO M3MeHAETCA ¢ TeMIepaTypoit, a 06a KomIo-
HEHTa B OTHEJbHOCTH OMMCHIBAIOTCA ypaBHEHMeM COCTOAHMA MpAealbHOro rasa. C nomombio
GHCTPO CXOUAIINXCA PAZIOB MOJIY4eHO AHATHTHYECKOe PellleHle A HYJIeBOro IPHGIIKCHNA.

Pemenvie 0CHOBHHIX ypaBHeHUM 3aBHCHT TOJNbKO OT uncen IImuara u Ipanpris.



